- According to the efficient coding hypothesis [1], sensory systems have evolved to encode environmental signals in an optimal way following information theory;
- This would provide a way to represent the greatest amount of information at the lowest possible cost in terms of resources;
- Possible implications for optimal cochlear implant boundary determination [2].

Previous work on speech: Ming and Holt (2009)
Identification of 6 -channel vocoded speech is overall better with "efficient-coding" based frequency boundaries than with logarithmically ordered cochleotopic boundaries;

- Overall superiority for word recognition in sentences and phoneme identification in non-words;

Previous work on speech: Ueda and Nakajima (2017)

Factor Analysis of speech signals in 8 different
languages [4];
20 frequency channels
Determining the number of "optimal" channels: 4 "optimal" channels;

- Locating the boundaries between these "optimal" channels: the boundaries would be stable whatever the language studied;
- Authors do not provide grounded arguments in favor of the number of 4 channels (in contrast to $3,5,6,7 \ldots$).

Figure 1: Schematic data processing diagram [4]

Figure 2: Factor loading curves for speech with 4 Principal Components (Ueda and Nakajima [4])

Figure 3: Factor loading curves depending on the number of PCs for speech (Grange and Culling [2]).

Figure 4: Scree plot (bottom): percentage of explained variance associated with each PC. The inflection point in the scree plot is compared with the perceptual performance data in terms of identification threshold for both digit triplets (top) and simple sentences (middle) (Grange and Culling [2]).

1. Research focus 1 :

- Performance observed on vocoded signal material in normal-hearing listeners as well as in Cl users is systematically better for speech signals than for music $[5,6]$;
Our aim is to compare statistical properties of music and speech signals in order to evaluate their respective contributions to the efficient coding theoretical proposal.

2. Research focus 2 :

- The idea of fixed boundaries that would not depend on the type of natural signals (e.g. speech vs. music, differences between speakers / between instruments) seems unlikely;
- Hence the need to be able to assess this variation;
- Our aim is to propose an objective method for determining the spectral boundaries as a function of the acoustic signal.
- Music samples from the FMA open source database [7] (Free Music Archive, https://github.com/mdeff/fma, MP3 files);
- The corpus size for analyses is 400 random samples (10 s . duration each) out of the 8,000 recordings available in the smallest version of the FMA database (approx. 4000 s);
- The mp3 compression level varies between 128 and $256 \mathrm{kbits} / \mathrm{s}$. identified by Ueda and Nakajima [4] are epresented as orange vertical segment (High-Frequency boundary: 16 kHz).

Factor loadings and Scree plot for a 1 hour speech sample

- A free corpus of speech signals [8] (Clarity Speech,
https://doi.org/10.17866/rd.salford.16918180);
- A random sample of 1,600 out of 10,000 sentences (approx. 4,500 s) from the British National Corpus (BNC), produced by 40 speakers of British English
- All audio files are stored in single channel 32-bit floating point wav format at a 44.1 kHz sampling rate;

1. Principal Components Analysis

- For both, music and speech, signal processing and statistical procedures were carried out in the Matlab environment and were mirrored from previous studies on speech [2, 4];
- As our aim was to compare speech and music, for which typical signal bandwidths differ, two higher-frequency limits were compared (8000 Hz vs. 16000 Hz).

2. Automated estimation of boundary location

- Identification of the adjacent curves by relating the frequency of the peak and the rank of the Principal component
- Estimates of the intersection: matching of adjacent curves the spectrum and averaging based on (1) the lower boundary estimate for the upper channel and (2) the upper boundary estimate for the lower channel (Fig. 5);

Figure 5: Initial broad boundary estimation
Modelling the intersection using first-order polynomials (straight lines, Fig. 6).
 identified by Ueda and Nakajima [4] are represented as orange vertical segments (High-Frequency boundary: 16 kHz).

Boundary comparison / music vs speech, 8 kHz
$\because \quad \square=$
Figure 11: Boundary comparison (blue: speech boundaries from FA, red:music boundaries from FA, green: logarithmic boundaries)

Figure 6: Final boundary estimation from intersection modelling

	Ch1/Ch2	Ch2/Ch3	$\mathrm{Ch3} / \mathrm{Ch4}$
Our initial estimate (in Hz)	586	1752	3775
Our estimate using inear modeling (in Hz)	${ }_{587}^{587}$	1735	375
Ueda \& Nakkjima estimate (2017, en Hz)	540	1720	3300
	$\mathrm{Ch} /$ / Ch 2	Cr2/ Ch	
Pifferere obsereed (is senitones)	${ }_{\substack{1.44 \\ 039}}$	${ }_{0}^{0.15}$	${ }_{\substack{2.19 \\ 0.8}}$

1. Speech signals

Results and Discussion

In accordance with Grange and Culling [2], there's an inflection poin in the scree plot for speech signals;

- Our estimates of frequency boundaries identified from speech do not closely match those of Ueda and Nakajima [4];

2. Music signals

Contrary to Grange and Culling [2]: no inflection point in the scree plot;
3. Music vs. Speech

- Boundaries are not fixed and depend on the type of natural signals (speech vs. music)
- Observations on variation in (1) boundary location and (2) PC Rank/frequency relations in figs. 11 to 13

4. Work in progress:

Replicate findings on a database of single instrument music recordings in order to get conceptually closer to "clean speech
Behavioral study on vocoded signals is currently being prepared in order to evaluate how these measures would impact perceptual processing for speech and melodies.

Figure 7: Factor loading curves for 1 hour of random music samples, frequency boundaries
Factor loadings and Scree plot for a 1 hour music sample
 individual values of explained variance, red: cumulated percentage of explained variance) for 1 hour of music with 16 kHz frequency limit. Possible targets: Inflection point (none identified) or a given \% (here, the 95% boundary is indicated).

Figure 9: Factor loading curves for 1 hour of random speech samples, frequency boundaries

Figure 10: Scree plo individual value of (blue variance, red:cumulated variance, red:cumulated variance) for 1 hour of speech with 16 kHz frequency limit. Possible targets: Inflection point (at 7th or 8th PCs) or a given \% (here, the 95% boundary is indicated).

Boundary comparison music vs speech, 16 kHz

Figure 12: Boundary comparison (blue: speech boundaries from FA, red:music boundaries from FA, green: logarithmic boundaries)

PC Ranks comparison music vs speech, 16 kHz

$022^{2} 120105=$
+18
Figure 13: PC ranks comparison (blue: speech PC from FA, red:music PC from

