Principal Components Analysis of amplitude envelopes from spectral channels:
comparison between music and speech.
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Introduction “ Factor loadings and Scree plot for a 1 hour music sample

» According to the efficient coding hypothesis [1], sensory 1. Research focus 1:
systems have evolved to encode environmental signals in
an optimal way following information theory;

» Performance observed on vocoded signal material in normal-hearing
listeners as well as in Cl users is systematically better for speech
signals than for music [5, 6];
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» This would provide a way to represent the greatest » Our aim is to compare statistical properties of music and speech ] o e
amount of information at the lowest possible cost in signals in order to evaluate their respective contributions to the : 4 .
terms of resources: efficient coding theoretical proposal. =

» Possible implications for optimal cochlear implant 2 Reseath focqs 2: | - 5] " R

.. » The idea of fixed boundaries that would not depend on the type of L S A I
boundary determination [2]. . . o
natural signals (e.g. speech vs. music, differences between speakers
/ between instruments) seems unlikely; Figure 8: Scree plot (blue:
» Hence the need to be able to assess this variation; e e individual values of explained
Previous work on speech: Ming and Holt (2009) » Our aim is to propose an objective method for determining the e ! I N s variance, red: cumu.lated

» ldentification of 6-channel vocoded speech is overall spectral boundaries as a function of the acoustic signal. P T A = = e percentage of explained
netter with “efficient-coding” based frequency s M - V?”ance) for 1 hour of music
boundaries than with logarithmically ordered N e o with 16 kHz frequency limit.
COCh|eOtOpiC boundaries; PP L LFE PP IS L POSSIbl-Z tar%c.etj: Inflect.lon p(;mt
» Overall superiority for word recognition in sentences and » Music samples from the FMA open source database [7] (Free Music _ () EE::: |theen’5|5|; )b;)l:nadiveir; ’

phoneme identification in non-words; Archive, https://github.com/mdeff/fma, MP3 files): Figure 7: Factor loading curves for Lhourof & ° !
random music samples, frequency boundaries indicated).

» The corpus size for analyses is 400 random samples (10 s. duration
each) out of the 8,000 recordings available in the smallest version of the
FMA database (approx. 40005s);

» Factor Analysis of speech signals in 8 different » The mp3 compression level varies between 128 and 256 kbits/s.
languages [4];

» 20 frequency channels;

» Determining the number of "optimal” channels: 4 "optimal” Speech samples Factor loadings and Scree plot for a 1 hour speech sample
channels:

. . . » A free corpus of speech signals [8] (Clarity Speech,
» Locating the boundaries between these "optimal" channels: the .
; .org/10.1 .salford.16918180);
boundaries would be stable whatever the language studied; https://doi.org/10.17866/rd salford. 16918180)

. . » A random sample of 1,600 out of 10,000 sentences (approx. 4,500s)
Authors do not d ded tsin f f th
> AULTOrs do not provide grounded arguments in favor of the from the British National Corpus (BNC), produced by 40 speakers of

identified by Ueda and Nakajima [4] are
epresented as orange vertical segments
(High-Frequency boundary: 16 kHz).

Previous work on speech: Ueda and Nakajima (2017)
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number of 4 channels (in contrast to 3, 5, 6, 7...). British English o ﬁ e 5
Critical-band Smg:hed » All audio files are stored in single channel 32-bit floating point wav = “ :
out (20 bands) fluctuations format at a 44.1kHz sampling rate; ) e
sounds H***F*— —> J\_}l —> | npos12 36 : 2 #
ﬂqM— -> gﬁg}%is Erraed i . | cp(-ordrecmissamde%devaﬂanceexp.iquée). |
B — _ * Figure 10: Scree plot (blue:
- 1. Principal Components Analysis. = individual values of explained
» For both, music and speech, signal processing and statistical variance, red:cumulated
Figure 1: Schematic data processing diagram [4] procedures were carried out in the Matlab environment and were percentage of explained
mirrored from previous studies on speech [2, 4]; 7 variance) for 1 hour of speech
» As our aim was to compare speech and music, for which typical ] = with 16 kHz frequency limit.
signal bandwidths differ, two higher-frequency limits were compared Possible targets: Inflection point
£ (8000 Hz vs. 16000 Hz). (at 7th or 8th PCs) or a
5 2. Automated estimation of boundary location Figure 9: Factor loading curves for 1 hour of given % (here, the 95%
= » ldentification of the adjacent curves by relating the frequency random speech samples, frequency boundaries boundary is indicated).
294 S R — of the peak and the rank of the Principal component ; identified by Ueda and Nakajima [4] are
Centre frequency (H2) » Estimates of the intersection: matching of adjacent curves in represented as orange vertical segments
the spectrum and averaging based on (1) the lower boundary (High-Frequency boundary: 16 kHz).

Figure 2: Factor loading curves for speech with 4 Principal Components

(Ueda and Nakajima [4]). estimate for the upper channel and (2) the upper boundary estimate

for the lower channel (Fig.5);

Boundary comparison / music vs speech, 8kHz

Grange and Culling (2018)
» Around 100 frequency channels; ,\/\/ o

» English language recordings only; I A B N A R U R VOO PP SO SV SR I
» Similar process for the extraction of natural sound statistics;

» Added comparison with perceptual results on simulations of
cochlear implants. » Modelling the intersection using first-order polynomials (straight

lines, Fig.6).

Figure 5: Initial broad boundary estimation.
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Figure 3: Factor loading curves depending verceptual performance data Results and Discussion Jdo |
on the number of PCs for speech (Grange in terms of identification 1 Speech signals HEEEEEEEEEEEEEEEEEEE I'E”Ei:h‘ﬁéém:?“‘ NN
and Culling [2]). threshold for both digit " 888§ §38§7YGEEEEPIIIIEiigoiiiiiff

» In accordance with Grange and Culling [2], there's an inflection point
in the scree plot for speech signals;

» Our estimates of frequency boundaries identified from speech do not
closely match those of Ueda and Nakajima [4];

2. Music signals
» Contrary to Grange and Culling [2]: no inflection point in the scree

triplets (top) and simple
sentences (middle) (Grange

and Culling [2]).

Figure 12: Boundary comparison (blue: speech boundaries from FA, red:music
boundaries from FA, green: logarithmic boundaries)
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